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FREDHOLM CONDITIONS FOR RESTRICTIONS OF
INVARIANT PSEUDODIFFERENTIAL OPERATORS

TO ISOTYPICAL COMPONENTS

ALEXANDRE BALDARE, RÉMI CÔME, MATTHIAS LESCH,
AND VICTOR NISTOR

Abstract. Let Γ be a finite group acting on a smooth, compact
manifold M , let P ∈ ψm(M ;E0, E1) be a Γ-invariant, classical
pseudodifferential operator acting between sections of two vector
bundles Ei → M , i = 0, 1, and let α be an irreducible representa-
tion of the group Γ. Then P induces a map πα(P ) : Hs(M ;E0)α →
Hs−m(M ;E1)α between the α-isotypical components of the corre-
sponding Sobolev spaces of sections. We prove that the map πα(P )
is Fredholm if, and only if, P is α-elliptic, a condition defined in
terms of the principal symbol of P and the action of Γ on the vec-
tor bundles Ei. The proofs are based on the study of the structure
of the algebra of invariant pseudodifferential operators on E0⊕E1.
These results generalize those in the abelian case (Baldare, Côme,
Lesch, Nistor, to appear in J.O.T.), but the proofs in the general
case of a finite group are much more difficult and involve new ideas.
The result is not true for non-discrete groups.
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1. Introduction

Fredholm operators have been extensively studied and appear in
many questions in Mathematical Physics, in Partial Differential Equa-
tions (linear and non-linear), in Geometry, in Index Theory, and in
other areas. On a compact manifold, a classical pseudodifferential op-
erator is Fredholm between suitable Sobolev spaces if, and only if, it
is elliptic. In this paper, we obtain an analogous result for the restric-
tions to isotypical components of a classical pseudodifferential operator
P invariant with respect to the action of a finite group Γ. Namely, the
restriction of P to the isotypical component corresponding to an irre-
ducible representation α of Γ is Fredholm if, and only if, the operator
is α-elliptic (Theorem 1.2).

Let us now formulate and explain this result in more detail.

1.1. The setting and general notation. We shall work essentially
in the same setting as the one considered in [5], but for a general finite
group Γ. Thus, throughout this paper, Γ will be a finite group acting
by diffeomorphisms on a smooth Riemannian manifold M . As our
main result is only valid for a compact manifold, we assume for this
introduction that M is compact. Certain intermediate results hold,
however, also for open manifolds and non-discrete groups, see [5]. For
the main result (Theorem 1.2), we do need Γ to be discrete and finite, so
our main result is optimal. Again, see [5]. There is no loss of generality
to assume that M is endowed with an invariant Riemannian metric, so
we will assume that this is the case also.

As usual, Γ̂ denotes the finite set of equivalence classes of irreducible
Γ-modules (or representations). Let T : V0 → V1 be a Γ-equivariant
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linear map of Γ-modules and α ∈ Γ̂. Then T induces by restriction a
Γ-equivariant linear map

(1) πα(T ) : V0α → V1α

between the α-isotypical components of the Γ-modules Vi, i = 0, 1.
We are mostly interested in this restriction morphism πα in the fol-

lowing case. Let P ∈ ψm(M ;E0, E1) be a classical, Γ-invariant pseu-
dodifferential operator acting between sections of two Γ-equivariant
vector bundles Ei →M , i = 0, 1. Then we obtain the operator

(2) πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α ,

which acts between the α-isotypical components of the corresponding
Sobolev spaces of sections. Our main result concerns this operator
πα(P ). For simplicity, we will consider only classical pseudodifferential
operators in this article [44, 46].

1.2. The α-principal symbol and α-ellipticity. To put our result
into the right perspective, recall that a classical, order m, pseudodif-
ferential operator P is called elliptic if its principal symbol

(3) σm(P ) ∈ C∞(T ∗M r {0}; Hom(E0, E1)) ,

is invertible. Also, recall that a linear operator T : X0 → X1 acting
between Banach spaces is Fredholm if, and only if, the vector spaces

ker(T ) := T−1(0) and coker(T ) := X1/TX0

are (both) finite dimensional. Since M is compact, a very well known
and widely used result states that P : Hs(M ;E0) → Hs−m(M ;E1) is
Fredholm if, and only if, P is elliptic [22, 23, 32, 33, 41]. Consequently,
if P is elliptic, then πα(P ) is also Fredholm. The converse is not true,
however, in general.

To state our main result characterizing the Fredholm property of
πα(P ) in terms of the “α-principal symbol” σαm(P ) of P , Theorem 1.2,
we shall need to introduce σΓ

m(P ), the “Γ-equivariant principal symbol”
of P , which is a refinement of the principal symbol σm(P ) of P that
takes into account the action of the group Γ. The α-principal sym-
bol σαm(P ) of P is a suitable restriction of the Γ-equivariant principal
symbol σΓ

m(P ). Let us formulate now the precise definition of these
concepts.

The main question that we answer in this paper is to determine when
the induced operator πα(P ) of Equation (2) is Fredholm in terms of its
Γ-equivariant principal symbol σΓ

m(P ), see Theorem 1.2 below for the
precise statement.
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The Γ-invariance of P implies that its principal symbol is also Γ
invariant:

σm(P ) ∈ C∞(T ∗M r {0}; Hom(E0, E1))Γ .

Let Γξ := {γ ∈ Γ | γξ = ξ} denote the isotropy of a ξ ∈ T ∗xM , x ∈
M , as usual. The isotropy Γx of x ∈ M is defined similarly. Then
Γξ ⊂ Γx acts on E0x and on E1x, the fibers of E0, E1 → M at x. If
Q ∈ C∞(T ∗M r {0}; Hom(E0, E1))Γ, then Q(ξ) ∈ Hom(E0x, E1x)

Γξ .

Let ρ ∈ Γ̂ξ be an irreducible representation of Γξ, then

(4) Q̂(ξ, ρ) := πρ
[
Q(ξ)

]
∈ Hom(E0xρ, E1xρ)

Γξ

denotes the restriction of Q to the isotypical component corresponding
to ρ, with πρ defined in Equation (1). Let

(5) XM,Γ := {(ξ, ρ) | ξ ∈ T ∗M r {0} and ρ ∈ Γ̂ξ} .

Thus Q defines a function on XM,Γ. Applying this construction to
σm(P ) ∈ C∞(T ∗M r {0}; Hom(E0, E1))Γ we obtain a function

(6)

σΓ
m(P ) : XM,Γ →

⋃
(x,ρ)∈XM,Γ

Hom(E0xρ, E1xρ)
Γξ ,

σΓ
m(P )(ξ, ρ) := πρ(σm(P )(ξ)) ∈ Hom(E0xρ, E1xρ)

Γξ , ξ ∈ T ∗xM .

That is σΓ
m(P ) := σ̂m(P ).

The α-principal symbol σαm(P ) of P , α ∈ Γ̂, is defined in terms of
σΓ
m(P ), but we need a crucial additional ingredient that takes α into

account. The characterization of Fredholm operators can be reduced
to each component of the manifold. We shall therefore often assume
in this paper that the manifold is connected. This simplifies also the
statements and the proofs, so, for the rest of this introduction, we shall
assume that our manifold M is connected.

Let A and B be finite groups and let H a subgroup of both A and
B. Let α ∈ Â and β ∈ B̂. We say that α and β are H-disjoint if
HomH(α, β) = 0, otherwise we say that they are H-associated.

Recall that Γgξ = gΓξg
−1 and that this defines an action of Γ on the

set {Γξ | ξ ∈ T ∗M} given by g · Γξ = Γgξ. For ρ ∈ Γ̂ξ define g · ρ ∈ Γ̂gξ
by (g · ρ)(h) = ρ(g−1hg), for all h ∈ Γgξ. Let Γ0 be a minimal isotropy
group for M (see Subsection 2.4.3). Let

(7) Xα
M,Γ := {(ζ, ρ) ∈ XM,Γ | ∃g ∈ Γ, g · ρ and α are Γ0-associated},

Thus (ζ, ρ) ∈ Xα
M,Γ if there is a g ∈ Γ such that g · ρ and α are not

Γ0-disjoint.
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Definition 1.1. The α-principal symbol σαm(P ) of P is the restriction
of σΓ

m(P ) to Xα
M,Γ:

σαm(P ) := σΓ
m(P )|Xα

M,Γ
.

We shall say that P ∈ ψm(M ;E0, E1)Γ is α-elliptic if its α-principal
symbol σαm(P ) is invertible everywhere on its domain of definition.

1.3. Statement of the main result. An alternative formulation of
Definition 1.1 is that P is α-elliptic if, and only if, σΓ

m is invertible
on Xα

M,Γ (this is, of course, a condition only for those ρ such that
Eiρ 6= 0, because, otherwise, we get an operator acting on the zero
spaces, which we admit to be invertible). We then have the following
result extending the classical result (i.e. Γ = {1}) and the one from [5]
(i.e. Γ finite abelian) to a general finite group Γ.

Theorem 1.2. Let Γ be a finite group acting on a smooth, compact
manifold M and let P ∈ ψm(M ;E0, E1)Γ be a Γ-invariant classical
pseudodifferential operator acting between sections of two Γ-equivariant

bundles Ei →M , i = 0, 1, m ∈ R, and α ∈ Γ̂. We have that

πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α

is Fredholm if, and only if it is α-elliptic.

As in the abelian case, if Γ acts without fixed points on a dense

open subset of M , then XM,Γ = Xα
M,Γ for all α ∈ Γ̂, by Corollary 3.19.

Hence, in this case, P is α-elliptic if, and only if, it is elliptic. The
ellipticity of P can thus be checked in this case simply by looking at
the action of P on a single isotypical component. We stress, however,
that if Γ is not discrete, this statement, as well as the statement of
the above theorem, are no longer true. However, many intermediate
results remain valid for compact Lie groups.

A motivation for our result comes from index theory. Let us assume
that P is Γ-invariant and elliptic. Atiyah and Singer have determined,
for any γ ∈ Γ, the value at γ of the character of indΓ(P ) ∈ R(G). More
precisely, they have computed indΓ(P )(γ) ∈ C in terms of data at the

fixed points of γ on M [3]. (Here R(G) := ZĜ is the representation
ring of G and is identified with a subalgebra of C∞(G)G, the ring of
conjugacy invariant functions on G via the characters of representa-

tions.) By contrast, the multiplicity of α ∈ Γ̂ in indΓ(P ) was much
less studied. It did appear, however, implicitly in the work of Brüning
[8, 9], who initiated the program of studying the “isotypical heat trace”
tr(pαe

−t∆) and its short time asymptotic expansion. Its heat trace is
nothing but the heat trace of πα(∆). Brüning’s program would lead, in



6 A. BALDARE, R. CÔME, M. LESCH, AND V. NISTOR

particular, to a heat equation determination of the α-isotypical com-
ponent of the Γ-equivariant index indΓ(D) for Dirac type operators D.
Carrying out this program is one of the motivations of this paper.

The formulation of our main result does not use C∗-algebras, but
its proof does. C∗-algebras were used recently to obtain Fredholm
conditions in [15, 17, 28, 37], for example. Some of the algebras in-
volved were groupoid algebras [12, 18, 34, 40]. Fredholm conditions
play an important role in the study of the essential spectrum of Quan-
tum Hamiltonians [6, 21, 20, 25, 27]. The technique of “limit operators”
[26, 30, 31, 39] is related to groupoids. Some of the most recent papers
using related ideas include [4, 11, 12, 13, 35, 36, 47], to which we refer
for further references. Besides C∗-algebras, pseudodifferential opera-
tors were also used to obtain Fredholm conditions, see [16, 29, 24] and
the references therein.

1.4. Contents of the paper. We start in Section 2 with some pre-
liminaries. We recall some facts about group actions, most notably
the induction of representations and Frobenius reciprocity for finite
groups. We also review some notions concerning the primitive spec-
trum of a C∗-algebra, as well as basic facts concerning (equivariant)
pseudodifferential operators.

As in [5], we may assume E0 = E1 = E and P to be of order zero.
Let AM := C(S∗M ; End(E)). The most substantial technical results
are in Section 3. There, we identify the primitive spectrum of the
C∗-algebra AΓ

M of Γ-invariant symbols with the set XM,Γ/Γ described
above. Some care is taken to describe the corresponding topology on
XM,Γ/Γ. We then consider the canonical map from AΓ

M to the Calkin
algebra of L2(M ;E)α and show that the closed subset of Prim(AΓ

M)
associated to its kernel is Xα

M,Γ/Γ.
These descriptions are used in Section 4 to prove the main result of

the paper, Theorem 1.2. This section also addresses some particular
cases of the Theorem and gives a few examples. We also explain the
relation with previously known results, namely:

• the particular formulation in the abelian case, which was estab-
lished in [5],
• Fredholm conditions for transversally elliptic operators when

the group Γ is not discrete,
• Simonenko’s local principle for Fredholm operators.

The last named author thanks Max Planck Institute for support
while this research was performed.
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2. Preliminaries

This section is devoted to background material. For the most part,
it will consist of a brief review of sections 2 and 3 of [5], where the
reader will find more details, as well as definitions and results not
repeated here. Note, however, that we need certain preliminary results
for the case Γ non-commutative that were not needed in the abelian
case. Nevertheless, the reader familiar with [5] can skip this section at
a first reading.

For simplicity, let us assume throughout this paper also that M is
connected, the general case being easily reduced to this one since the
Fredholm property is valid globally if, and only if, it is valid on each
connected component of our compact manifold.

2.1. Group representations. We follow the standard terminology
and conventions. See, for instance, [5, 7, 42], where one can find further
details. Most of the needed basic background material was recalled in
greater detail in [5].

Throughout the paper, we denote by Γ a finite group acting by
isometries on a smooth, Riemannian manifold M (without boundary).
We use the standard notations, see [5, 7, 42], to which we refer for
further details. If x ∈M , then Γx is the Γ orbit of x and

(8) Γx := {γ ∈ Γ | gx = x} ⊂ Γ

the isotropy group of the action at x.
We shall write H ∼ H ′ if the subgroups H and H ′ are conjugated in

Γ. If H ⊂ Γ is a subgroup, then M(H) will denote the set of elements
of M whose isotropy Γx is conjugated to H (in Γ), that is, the set of
elements x ∈M such that Γx ∼ H.

Assuming that Γ acts on a space X, we denote by Γ×H X the space

(9) Γ×H X := (Γ×X)/ ∼,
where (γh, x) ∼ (γ, hx), ∀γ ∈ Γ, h ∈ H and x ∈ X.

Let V be a normed complex vector space and L(V ) be the set of
bounded operators on V . A representation of Γ on V is a group mor-
phism Γ→ L(V ); in that case we also call V a Γ-module.

For any two Γ-modules H and H1, we shall denote by

HomΓ(H,H1) = Hom(H,H1)Γ = L(H,H1)Γ

the set of continuous linear maps T : H → H1 that commute with the
action of Γ, that is, T (γξ) = γT (ξ) for all ξ ∈ H and γ ∈ Γ.

LetH be a Γ-module and α an irreducible Γ-module. Then pα will de-
note the Γ-invariant projection onto the α-isotypical component Hα of
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H, defined as the largest (closed) Γ submodule of H that is isomorphic
to a multiple of α. In other words, Hα is the sum of all Γ-submodules
of H that are isomorphic to α. Notice that Hα ' α⊗ HomΓ(α,H).

Since Γ is finite, it is, in particular, compact, and hence we have

(10) Hα 6= 0 ⇔ HomΓ(α,H) 6= 0 ⇔ HomΓ(H, α) 6= 0.

If T ∈ L(H)Γ (i.e. T is Γ-equivariant), then T (Hα) ⊂ Hα and we let

(11) πα : L(H)Γ → L(Hα) , πα(T ) := T |Hα ,

be the associated morphism, as in Equation (1) of the Introduction.
The morphism πα will play an essential role in what follows.

2.2. Induction and Frobenius reciprocity. We now recall some
definitions and results for induced representations mainly to set up
notation and to obtain some intermediate results.

We let V (I) := {f : I → V } for I finite. If H ⊂ Γ is a subgroup
(hence also finite) and V is a H-module, we define, as usual,

IndΓ
H(V ) := C[Γ]⊗C[H] V

' { ξ : Γ→ V | f(gh−1) = hf(g) } ' V (Γ/H)
(12)

to be the induced representation. The last isomorphism is obtained
using a set of representatives of the right cosets Γ/H. The action of
the group Γ on IndΓ

H(V ) is obtained from the left multiplication on C[Γ]
and the first isomorphism defines the Γ-module structure on IndΓ

H(V ).
The induction is a functor, that is, the Γ-module IndΓ

H(V ) depends
functorially on V .

Remark 2.1. Summarizing Remark 2.2 of [5], we have that

(1) if V is a H-algebra, then IndΓ
H(V ) is an algebra for the pointwise

product,
(2) if V is a left R-module (with compatible actions of Γ), then

IndΓ
H(V ) is a IndΓ

H(R) module, again with the pointwise multi-
plication,

(3) the induction is compatible with morphisms of modules and al-
gebras (change of scalars), again by the function representation
of the induced representation.

See [5, Remark 2.2] for more details.
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We shall use the Frobenius reciprocity in the form that states that
we have an isomorphism
(13)

Φ = ΦΓ,H
H,V : HomH(H, V ) → HomΓ(H, IndΓ

H(V )) ,

Φ(f)(ξ) :=
1

|H|
∑
g∈Γ

g ⊗C[H] f(g−1ξ), ξ ∈ H, f ∈ HomH(H, V ) .

The version of the Frobenius reciprocity used in this paper is valid only
for finite groups [7, 42] (although it can be suitably be generalized to the
compact case). We note that a more precise notation would be to write
HomH(ResΓ

H(H), V ) instead of our simplified notation HomH(H, V ).

Let α ∈ Γ̂, let H ⊂ Γ be a subgroup, and β ∈ Ĥ. A useful con-
sequence of the Frobenius reciprocity is that the multiplicity of α in
indΓ

H(β) is the same as the multiplicity of β in the restriction of α to H.
In particular, α is contained in indΓ

H(β) if, and only if, β is contained
in the restriction of α to H, in which case we say that α and β are
H-associated (to each other). On the other hand, recall that if β is
not contained in the restriction of α to H, we say that α and β are
H-disjoint.

Let V be a H-module and H be the trivial Γ-module C. Then we
obtain, in particular, an isomorphism

(14)

Φ : V H = HomH(C, V ) ' HomΓ(C, IndΓ
H(V )) = IndΓ

H(V )Γ ,

Φ(ξ) :=
1

|H|
∑
g∈Γ

g ⊗C[H] ξ =
∑
x∈Γ/H

x⊗ ξ .

If V is an algebra, then the map Φ is an isomorphism of algebras. In
particular, we obtain the following consequences.

Remark 2.2. Let H ⊂ Γ be a subgroup of Γ, βj be non-isomorphic
simple H-modules, j = 1, . . . , N , and

(15) β := ⊕Nj=1β
kj
j .

We then have that IndΓ
H(β) ' ⊕Nj=1 IndΓ

H(β
kj
j ) and the Frobenius iso-

morphism gives

(16) IndΓ
H(End(β))Γ ' End(β)H ' ⊕Nj=1 End(β

kj
j )H ' ⊕Nj=1Mkj(C),

which is a semi-simple algebra and where the first isomorphism is in-
duced by Φ of Equation (14).

We shall need the following refinement of the above remark.
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Lemma 2.3. Let β := ⊕Nj=1β
kj
j be as in Equation (15), let

T = (Tj) ∈ End(β)H ' ⊕Nj=1 End(β
kj
j )H ,

with Tj ∈ End(β
kj
j )H , and let ξj ∈ IndΓ

H(β
kj
j ). We let

ξ := (ξj) ∈ ⊕Nj=1 IndΓ
H(β

kj
j ) ' IndΓ

H(β) .

Then Φ(T )(ξ) = (Φ(Tj)ξj)j=1,...,N .

Proof. See for example [5, Lemma 2.4]. �

For the abelian case, the following elementary result was proved in
[5] Proposition 2.5. That proof does not generalize to our case.

Proposition 2.4. Let β := ⊕Nj=1β
kj
j be as in Equation (15). Let

J ⊂ {1, 2, . . . , N} be the set of indices j such that α and βj are H-
disjoint (i.e. βj is not contained in the restriction of α to H). Then
the morphism

πα : IndΓ
H(End(β))Γ → End(pα IndΓ

H(β))

is such that

ker(πα) =
⊕
j∈J

IndΓ
H(End(β

kj
j ))Γ and Im(πα) '

⊕
j /∈J

IndΓ
H(End(β

kj
j ))Γ .

Proof. By Lemma 2.3, we can assume that N = 1. Therefore the alge-
bra End(β)H is simple (more precisely, isomorphic to a matrix algebra
Mq(C), q = k1). We shall use the isomorphism of Equation (16). The
action of IndΓ

H(End(β))Γ ' End(β)H ' Mq(C) on IndΓ
H(β) is unital

(i.e. non-degenerate), so the morphism

(17) Mq(C) ' IndΓ
H(End(β))Γ → End(pα IndΓ

H(β))

is injective if, and only if, pα IndΓ
H(β) 6= 0. Notice the following equiv-

alences

pα IndΓ
H(β) 6= 0⇔ Hom(α, IndΓ

H(β))Γ 6= 0⇔ Hom(α, β)H 6= 0.

The result then follows from Equation (10). �

2.3. The primitive ideal spectrum of a C∗-algebra. We shall need
a few basic concepts and facts about C∗-algebras. A general reference
is [19]. Recall that a two-sided ideal I ⊂ A of a C∗-algebra A is called
primitive if it is the kernel of a non-zero, irreducible ∗-representation of
A. HenceA is not a primitive ideal of itself. By Prim(A) we shall denote
the set of primitive ideals of A, called the primitive ideal spectrum of
A. If X is a locally compact space, then C0(X) denotes the space of
continuous functions X → C that vanish at infinity. The concept of
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primitive ideal spectrum is important for us since we have a natural
homeomorphism

(18) Prim(C0(X)) ' X .

This identification lies at the heart of non-commutative geometry [14].
If A is a type I C∗-algebra, then Prim(A) identifies with the set

of isomorphism classes of irreducible representations of A. Any C∗-
algebra with only finite dimensional irreducible representations is a
type I algebra [19]. Most of the algebras considered in this paper (a
notable exception are the algebras of compact operators), have this
property.

The following example from [5] will be used several times.

Example 2.5. Let H be a finite group and β = ⊕Nj=1β
kj
j be as in

Remark 2.2. Then, as explained in that remark, L(β)H ' ⊕jMkj(C).
The algebra L(β)H = EndH(β) is thus a C∗-algebra with only finite
dimensional representations and we have natural homeomorphisms

Prim(EndH(β)) ↔ {β1, β2, . . . , βN} ↔ {1, 2, . . . , N} .

The space Prim(A) is a topological space for the Jacobson topology:
we refer to [19] for more details. We will recall some facts about this
topology when we need it, see Lemma 3.2 below.

We shall need the following “central character” map.

Remark 2.6. Let Z be a commutative C∗-algebra and φ : Z →M(A)
be a ∗-morphism to the multiplier algebra M(A) of A [1, 10]. Assume
that φ(Z) commutes with A and φ(Z)A = A. Then Schur’s lemma
gives that there exists a natural continuous map

(19) φ∗ : Prim(A)→ Prim(Z) ,

which we shall call also the central character map (associated to φ).

We conclude our discussion with the following simple result.

Lemma 2.7. We freely use the notation of Example 2.5. The in-
clusion of the unit C → EndH(β) induces a morphism j : C0(X) →
C0(X; EndH(β)) ' C0(X) ⊗ EndH(β). The resulting central character
map is the first projection
(20)
j∗ : Prim(C0(X; EndH(β))) ' X × {1, 2, . . . , N} → X ' Prim(C0(X)) .

2.4. Group actions on manifolds. As before, we consider a finite
group Γ acting by isometries on a compact Riemannian manifold M .
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2.4.1. Slices and tubes. Given x ∈ M , the isotropy group Γx acts lin-
early and isometrically on TxM . For r > 0, let Ux := (TxM)r denote
the set of vectors of length < r in Nx. It is known then that, for r > 0
small enough, the exponential map gives a Γ-equivariant isometric dif-
feomorphism

(21) Wx = exp(Γ×Γx Ux) ' Γ×Γx Ux

where Wx is a Γ-invariant neighborhood of x in M and Γ ×Γx Ux is
defined in equation (9). More precisely, Wx is the set of y ∈ M at
distance < r to the orbit Γx, if r > 0 is small enough. The set Wx is
called a tube around x (or Γx) and the set Ux is called the slice at x.
When M is compact, the injectivity radius is bounded from below, so
we may assume that the constant r does not depend on x.

2.4.2. Equivariant vector bundles. Let us consider now a Γ-equivariant
smooth vector bundle E → M . Let us fix x ∈ M and consider as
above the tube Wx ' Γ ×Γx Ux around x, see Equation (21). We use
this diffeomorphism to identify Ux to a subset of M , in which case,
we can also assume the restriction of E to the slice Ux to be trivial.
Therefore, there exists a Γx-module β such that

(22)
E|Ux ' Ux × β and

E|Wx ' Γ×Γx (Ux × β) ,

The second isomorphism is Γ-equivariant.
Assume E is endowed with a Γ-invariant hermitian metric. We then

have isomorphisms of Γ-modules:

(23)
L2(Wx;E|Wx) ' IndΓ

Γx(L
2(Ux; β)) and

C0(Wx;E|Wx) ' IndΓ
Γx(C0(Ux; β)) .

In view of the previous isomorphism, we will often identify Wx and
Γ×Γx Ux, making no distinction between them to simplify notations.

2.4.3. The principal orbit bundle. Recall that M(H) denotes the set of
points of M whose stabilizer is conjugated in Γ to H. Recall that we
have assumed that M is connected. We moreover assume that M is
compact. The reason of these assumptions is that it is known then [45]
that there exists a minimal isotropy subgroup Γ0 ⊂ Γ, in the sense that
M(Γ0) is a dense open subset of M .

In particular, the fact that M is connected gives that there exist
minimal elements for the set of isotropy groups of points in M (with
respect to inclusion) and all minimal isotropy groups are conjugated
to a fixed subgroup Γ0 ⊂ Γ. By the definition, the set M(Γ0) consists
of the points whose stabilizer is conjugated to that minimal subgroup.
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The set M(Γ0) is called the principal orbit bundle of M . We will denote
M(Γ0) by M0 in the sequel.

The principal orbit bundle M0 := M(Γ0) has to following useful prop-
erty. If x ∈ M0, then Γx acts trivially on the slice Ux at x, by the
minimality of Γ0. Hence Γ0 acts trivially on T ∗xM as well, which im-
plies that Γ0 ⊂ Γξ for any ξ ∈ T ∗xM . If, on the other hand, x ∈ M
is arbitrary (not necessarily in the principal orbit bundle), then the
isotropy of Γx will contain a subgroup conjugated to Γ0.

2.5. Pseudodifferential operators. We continue to follow [5]. We
also continue to assume that Γ is a finite Lie group that acts smoothly
and isometrically on a smooth Riemannian manifold M . Let ψm(M ;E)
denote the space of order m, classical pseudodifferential operators on
M with compactly supported distribution kernel.

Let ψ0(M ;E) and ψ−1(M ;E) denote the norm closures of ψ0(M ;E)
and ψ−1(M ;E), respectively. The action of Γ then extends to an action

on ψm(M ;E), ψ0(M ;E), and ψ−1(M ;E). We shall denote by K(H)
the algebra of compact operators acting on a Hilbert space H. Of
course, we have ψ−1(M ;E) = K(L2(M ;E)), since we have considered
only pseudodifferential operators with compactly supported distribu-
tion kernels.

Let S∗M denote the unit cosphere bundle of a smooth manifold M ,
that is, the set of unit vectors in T ∗M , as usual. We shall denote, as
usual, by C0(S∗M ; End(E)) the set of continuous sections of the lift of
the vector bundle End(E)→M to S∗M .

Corollary 2.8. We have an exact sequence

0 → K(L2(M ;E))Γ → ψ0(M ;E)Γ
σ0

−−→ C0(S∗M ; End(E))Γ → 0 .

Proof. See, for instance, [5, Corollary 2.7]. �

2.5.1. The structure of regularizing operators. From now on, all our
vector bundles will be Γ-equivariant vector bundles. We want to un-
derstand the structure of the algebra πα(ψ0(M ;E)Γ), for any fixed

α ∈ Γ̂ (see Equations (1) and (11) for the definition of the restriction
morphism πα and of the projectors pα ∈ C∗(Γ)).

We shall need the following standard result about negative order
operators. Recall that, for α ∈ Γ̂, we let πα be the representation of
ψ0(M ;E)Γ on L2(M ;E)α defined by restriction as before, Equations
(1) and (11).
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Proposition 2.9. We have the identifications

pαψ
−1(M ;E)Γ ' πα(ψ−1(M ;E)Γ)

= πα(K(L2(M ;E))Γ) = K(L2(M ;E)α)Γ ,

where the first isomorphism map is simply πα and

K(L2(M ;E))Γ = ψ−1(M ;E)Γ ' ⊕α∈Γ̂K(L2(M ;E)α)Γ .

Proof. See, for example, [5, Section 3] for a proof. �

3. The principal symbol

From now on we assume that M is compact and connected. Let
us fix an irreducible representation α of Γ and consider the restriction
morphism πα to the α-isotypical component of L2(M ;E). Recall that
this morphism was first introduced in Equation (1) and discussed in
detail in Section 2.1. As in [5], we now turn to the identification of the
quotient

πα(ψ0(M ;E)Γ)/πα(ψ−1(M ;E)Γ).

The methods used in this paper diverge, however, drastically from those
of [5].

Since πα(ψ−1(M ;E)Γ) was identified in the previous section, the

promised identification of the quotient πα(ψ0(M ;E)Γ)/πα(ψ−1(M ;E)Γ)

will give further insight into the structure of the algebra πα(ψ0(M ;E)Γ)
and will provide us, eventually, with Fredholm conditions. Recall that,
in this paper, we are assuming Γ to be finite. Nevertheless, a several
intermediate results hold also in the case Γ compact.

3.1. The primitive ideal spectrum of AΓ
M . As before, S∗M denotes

the unit cosphere bundle of M . For the simplicity of the notation, we
shall write

AM := C(S∗M ; End(E)),

as in the Introduction. Recall from Corollary 2.8 that we have an
algebra isomorphism

(24) ψ0(M ;E)Γ/ψ−1(M ;E)Γ ' AΓ
M .

In our case, the inclusion j : C(S∗M/Γ) ⊂ AΓ
M as a central subalgebra

induces, as in Equation (19), a central character map

j∗ : Prim(AΓ
M)→ S∗M/Γ,

that underscores the local nature of the structure of the primitive ideal
spectrum of AΓ

M . We introduce the representation πξ,ρ defined for any
f ∈ AΓ

M by
πξ,ρ(f) = πρ(f(ξ)),
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that is πξ,ρ(f) is the restriction of f(ξ) ∈ End(Ex) to the ρ-isotypical
component of Ex. The central character map j∗ was used in [5], Corol-
lary 4.2, to obtain the following identification of Prim(AΓ

M).

Proposition 3.1 ([5]). Let ΩM be the set of pairs (ξ, ρ), where ξ ∈
S∗xM , x ∈M , and ρ ∈ Γ̂ξ appears in Ex (i.e. HomΓξ(ρ, Ex) 6= 0).

(1) The map ΩM/Γ 3 Γ(ξ, ρ) 7→ ker(πξ,ρ) ∈ Prim(AΓ
M) is bijective.

(2) The central character map ΩM/Γ ' Prim(AΓ
M)→ S∗M/Γ maps

Γ(ξ, ρ) ∈ ΩM/Γ to Γξ and is continuous and finite-to-one.

The space Prim(AΓ
M) is endowed with the Jacobson topology, which

was recalled in Subsection 2.3; thus Proposition 3.1 allows us to use
the central character map j∗ to obtain a topology on ΩM/Γ that will
play a crucial role in what follows. We thus now turn to the study of
this topology on ΩM/Γ. We begin with the following standard lemma.

Lemma 3.2. Let A be a C∗-algebra. The family (Va)a∈A defined by

Va = {J ∈ PrimA | a /∈ J},

for any a ∈ A, is a basis of open sets for Prim(A).

Proof. Following [19], we know that the open, non-empty subsets of
Prim(A) are exactly the sets

{J ∈ Prim(A) | I 6⊂ J} ' Prim(I)

where I ranges through the closed, non-zero, two-sided ideals of A. If
a ∈ A, let us denote by Ia := AaA the closed, two-sided ideal generated
by a. Then a /∈ J ⇔ Ia 6⊂ J , and hence Va = Prim(Ia). This shows
that Va is open.

Next, let V ⊂ Prim(A) be a non-empty open subset and J0 ∈ V .
We know then that there exists a closed, two-sided ideal I, 0 6= I ⊂ A,
such that V = Prim(I). We have I 6⊂ J0, and hence we can choose
a ∈ I r J0. If J ⊂ A is a primitive ideal such that a /∈ J , then a
fortiori I 6⊂ J . Therefore Va ⊂ Prim(I). This shows that J0 ∈ Va ⊂ V .
Therefore the family (Va)a∈A is a basis for the topology on Prim(A). �

We shall use the bijection of Proposition 3.1 to conclude the follow-
ing.

Corollary 3.3. A basis for the induced topology on ΩM/Γ ' Prim(AΓ
M)

is given by the sets

Vf := {Γ(ξ, ρ) ∈ ΩM/Γ | πξ,ρ(f) 6= 0 },

where f ranges through the non-zero elements of AΓ
M .
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3.2. The restriction morphisms. Let O ⊂ M be an open subset.
Then S∗O is the restriction of S∗M to O. We shall need the algebras

(25) AO := C0(S∗O; End(E)) and BO := ψ0(O;E) .

Assume that O ⊂ M is Γ-invariant. The group Γ does not act,
in general, as multipliers on the C∗-algebra BO := ψ0(O;E) (it does
however act by conjugation), so the method used in [5] to compute

ψ−1(O;E)Γ ' K(L2(O;E))Γ does not extend to compute BΓ
O. We

shall thus consider the natural, surjective map

(26) RO : AΓ
O := C0(S∗O; End(E))Γ ' BΓ

O/ψ
−1(O;E)Γ

→ πα(BΓ
O)/πα(ψ−1(O;E)Γ).

Recall from Corollary 2.9 that πα(ψ−1(M ;E)Γ) = K(L2(M ;E)α)Γ.

Therefore, for a given P ∈ ψ0(M ;E), we have that πα(P ) is Fredholm
if, and only if, the principal symbol of P is invertible in AΓ

M/ ker(RM).
This will be discussed in more detail in the next section.

We shall approach the computation of ker(RM) ⊂ AΓ
M by determin-

ing the closed subset

(27) Ξ := Prim(AΓ
M/ ker(RM)) ⊂ Prim(AΓ

M)

of the primitive ideal spectrum of AΓ
M corresponding to ker(RM). Once

we will have determined Ξ, we will also have determined ker(RM), in
view of the definitions recalled in Subsection 2.3 that put in bijection
the closed, two-sided ideals of a C∗-algebra with the closed subsets of
its primitive ideal spectrum.

Since C(M/Γ) ⊂ BM , it follows from the definition of RM that it is
a C(M/Γ)–module morphism, and hence that ker(RM) is a C(M/Γ)–
module. Let us also recall that

C(M/Γ) = C(M)Γ ⊂ ZM := C(S∗M)Γ ⊂ Z(AΓ
M) ⊂ AΓ

M ⊂ AM .

The local nature of ker(RM) and of the space Ξ is explained in the
following remark.

Remark 3.4. Let M/Γ = ∪Vk be an open cover and ker(RM)Vk :=
C0(Vk) ker(RM) = ker(RVk). If we determine each ker(RM)Vk , then we
determine ker(RM) using a partition of unity through:

(28) ker(RM) =
∑
k

′
φk ker(RVk) ,

where
∑′ refers to sums with only finitely many non-zero terms and

(φk) is a partition of unity of M/Γ with continuous functions subordi-
nated to the covering (Vk) (thus, in particular, supp(φk) ⊂ Vk). Since
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M is compact, we can assume the covering to be finite. (If M was
non-compact, then we would need to take the closure of the right hand
side in Equation (28).) To determine RM , we can therefore replace M
by any of the open sets Vk in the covering and study ker(RVk). We
shall do that for the covering of M/Γ with the tubes Wx ' Γ ×Γx Ux
considered in 2.4.1, see Equation (21).

3.3. Local calculations. In view of Remark 3.4, we shall concentrate
now on the local structure of ker(RM), that is, on the structure of
ker(RO) for suitable (“small”) open, Γ-invariant subsets O ⊂ M . Let
us fix then x ∈ M and let Wx ' Γ ×Γx Ux be the tube around x,
Equation (21). For simplicity, we shall write

(29) Ax := AUx := C0(S∗Ux; End(E)) and Zx := Z(AΓx
x ) .

For these algebras, the role of Γ will be played by Γx. For the state-
ment of the following lemma, recall the definitions in Subsection (2.4),
especially Equation (21).

Lemma 3.5. Let Wx ' Γ ×Γx Ux. Then S∗Wx ' Γ ×Γx S
∗Ux and we

have Γ-equivariant algebra isomorphisms

AWx := C0(S∗Wx; End(E)) ' IndΓ
Γx

(
C0(S∗Ux; End(E))

)
=: IndΓ

Γx(Ax) .

Consequently, the Frobenius isomorphism Φ of Equation (14) induces
an isomorphism

Φ−1 : AΓ
Wx
→ AΓx

x .

Proof. We have that E|Wx ' Γ ×Γx (E|Ux) and hence End(E)|Wx '
Γ ×Γx (End(E)|Ux). Equation (23) then gives that C0(Wx,End(E)) '
IndΓ

Γx(C0(Ux,End(E))). The rest follows right away from the Frobenius
reciprocity (more precisely, from Equation (14)) and from Equation
(23), with β replaced with End(E). �

Remark 3.6. In view of Equation (14), the isomorphism Φ of Lemma
3.5 can be written explicitly as follows. Let f ∈ AΓx

x . Then, for any
equivalence class [γ, ξ] := Γx(γ, ξ) ∈ Γ×Γx S

∗Ux ' S∗Wx we have

Φ(f)([γ, ξ]) = [γ, f(ξ)],

where [γ, f(ξ)] ∈ Γ ×Γx (Ux × End(Ex))
Γx ' Γ ×Γx End(E|Ux)Γx '

End(E|Wx)
Γ. This defines Φ(f) ∈ C0(S∗Wx; End(E|Wx))

Γ = AΓ
Wx

.

Lemma 3.5 together with the following remark will allow us to reduce
the study of the algebra AΓ

M to that of its analogues defined for slices.

Remark 3.7. Let U be an open set of some euclidean space and W =
U×{1, 2, . . . , N}, where the space on the second factor is endowed with
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the discrete topology. For simplicity, we identify L2(W ) with L2(U)N

using the map f 7→ (f(i))i=1···N . Then

(30)
ψ−1(W ) = MN(ψ−1(U)) ' ψ−1(U)⊗MN(C) and hence

ψ−1(W ) = MN(ψ−1(U)) ' ψ−1(U)⊗MN(C) .

On the other hand, if AN denotes the direct sum of N -copies of the
algebra A, then we have the following inclusions of algebras
(31)

ψ0(U)N ⊂ ψ0(W ) ⊂MN(ψ0(U)) ' ψ0(U)⊗MN(C), and hence

ψ0(U)N ⊂ ψ0(W ) ⊂MN(ψ0(U)) ' ψ0(U)⊗MN(C) .

The following lemma makes explicit the group actions in the isomor-
phisms of the last remark. Thus, in analogy with the definitions of the
algebras AWx = C0(S∗Wx; End(E)) and Ax = C0(S∗Ux; End(E)), we
consider the algebras

(32) BWx := ψ0(Wx;E) and Bx := ψ0(Ux;E) .

We shall also use the standard notation V (I) := {f : I → V } for I
finite, as before.

Lemma 3.8. We keep the notation of Lemma 3.5 and of Equation (32)
above. Then we have Γ-equivariant algebra isomorphisms

BWx ' IndΓ
Γx(Bx) + ψ−1(Wx;E) .

Consequently, BΓ
Wx
' Φ(BΓx

x ) + ψ−1(Wx;E)Γ.

Proof. Since By = BUy ⊂ BWx for all y ∈ Γx and since Ux and Uy
are diffeomorphic through any γ ∈ Γ such that γx = y we obtain the

inclusion B
(Γ/Γx)
x ⊂ BWx , as in Remark 3.7. Similarly, since Bx → Ax

is surjective, we obtain the equality BWx = B
(Γ/Γx)
x +ψ−1(Wx;E) as in

the same remark. From Equation (24) and Lemma 3.5 we know that

BWx/ψ
−1(Wx;E) ' AWx ' A

(Γ/Γx)
Ux

= IndΓ
Γx(Ax), and hence we obtain

BWx ' IndΓ
Γx(Bx) + ψ−1(Wx;E) . The last isomorphism follows from

the Frobenius reciprocity (more precisely, from Equation (23), with β
replaced with Bx) and from the exactness of the functor V → V Γ. �

To be able to make further progress, it will be convenient to look first
at the case when x ∈ M has minimal isotropy Γx ∼ Γ0, that is, when
x belongs to the principal orbit bundle M0 := M(Γ0). The notation Γ0

will remain fixed from now on.
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3.4. Calculations for the principal orbit bundle. We assume as
before that M is connected. Let Γ0 be a minimal isotropy group (which,
we recall, is unique up to conjugation). Let x ∈ M be our fixed point
and Γx its isotropy, as before. The case when Γx is conjugated to Γ0 is
simpler since, as noticed already, then Γx acts trivially on Ux.

Let us fix x ∈M with isotropy group Γx = Γ0. As before, we let

Wx ' Γ×Γ0 Ux and E|Wx ' Γ×Γ0 (Ux × β) ,

where β is some Γ0-module, as in Equations (21) and (22). We decom-

pose β into a direct sum of representations of the form β
kj
j for some

non-isomorphic irreducible module (or representation) βj of Γ0, again
as before:

Ex = β ' ⊕βkjj .

Remark 3.9. We have noticed earlier that Γ0 acts trivially on Ux,
hence on T ∗xM . In particular S∗M also has Γ0 as minimal isotropy
subgroup, and S∗M0 is a dense subset of the principal bundle of S∗M .

Corollary 3.10. Let x ∈ M be such that Γx = Γ0 and β = ⊕Nj=1β
kj
j ,

for some non-isomorphic, irreducible Γ0-modules βj. Then

AΓ
Wx
' AΓx

x ' C0(S∗Ux)⊗ EndΓ0(β) ' ⊕Nj=1Mkj

(
C0(S∗Ux)

)
.

In particular, the canonical central character map Prim(AΓ0
x )→ S∗Ux '

Prim(C0(S∗Ux)
Γ0) of Proposition 3.1 corresponds to the trivial finite

covering S∗Ux × Prim(EndΓ0(β))→ S∗Ux.

Proof. The first isomorphism is repeated from Lemma 3.5. The second
one is obtained from the following:

(i) from the definition of Ax = AUx ,
(ii) from the assumption that Γx = Γ0,

(iii) from the fact that Γ0 acts trivially on Ux, and
(iv) from the identifications

AΓ0
x := C0(S∗Ux; End(E))Γ0 ' C0(S∗Ux)⊗ End(β)Γ0 .

The last isomorphism follows from Example 2.5 and the isomorphism
Mn(C) ⊗ A ' Mn(A), valid for any algebra A. The rest follows from
Lemma 2.7.

Indeed, since both C0(S∗Ux) and End(β)Γ0 have only finite dimen-
sional irreducible representations, we obtain Prim(AΓ0

x ) = S∗Ux ×
Prim(EndΓ0(β)) ' S∗Ux×{1, 2, . . . , N}, where we use the identification
Prim(C0(S∗Ux)) ' S∗Ux and where the set {1, 2, . . . , N} is in natural
bijection with the primitive ideal spectrum of the algebra EndΓ0(β) '
⊕Nj=1Mkj(C). The inclusion C0(S∗Ux) = C0(S∗Ux)

Γ0 → AΓ0
x is given by
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the unital inclusion C → ⊕Nj=1Mkj(C). Hence the map Prim(AΓ0
x ) →

S∗Ux identifies with the first projection in S∗Ux×{1, 2, . . . , N} → S∗Ux.
That is, it is a trivial covering, as claimed. �

The fibers of Prim(AΓ
M0

) → M0/Γ are thus the simple factors of
End(Ex)

Γ0 , whose structure was determined in Example 2.5. We shall
need the following remark similar to Remark 3.7, but simpler.

Remark 3.11. Let U be an open subset of a euclidean space, let V
be a finite dimensional vector space and let V denote, by abuse of
notation, also the trivial, vector bundle with fiber V . Then we have
natural isomorphisms

ψ−1(U ;V ) ' ψ−1(U)⊗ End(V ) and

ψ0(U ;V ) ' ψ0(U)⊗ End(V ) .

Consequently, we also have the analogous isomorphisms for the com-
pletions

ψ−1(U ;V ) ' ψ−1(U)⊗ End(V ) and

ψ0(U ;V ) ' ψ0(U)⊗ End(V ) .

We are in position now to determine the kernel of RWx , when x is
in the principal orbit bundle. We will use the notation of Subsection
2.4 that was recalled at the beginning of this subsection as well as the

notation of Subsection 2.2. In particular, recall that βj ∈ Γ̂0 and α ∈ Γ̂
are said to be Γ0-disjoint if βj is not contained in the restriction of α
to Γ0. Also, Φ is the Frobenius isomorphism, Equations (13) and (14)
and Corollary 3.10.

Proposition 3.12. Let Γx = Γ0, let Ex = β = ⊕Nj=1β
kj
j , and Φ :

C0(S∗Ux) ⊗ EndΓ0(β) ' AΓ0
x → AΓ

Wx
be the Frobenius isomorphism of

Corollary 3.10. Then

(1) C0(S∗Ux) ⊗ EndΓ0(β
kj
j ) ⊂ Φ−1(ker(RWx)) if βj and α are Γ0-

disjoint, and

(2) C0(S∗Ux) ⊗ EndΓ0(β
kj
j ) ∩ Φ−1(ker(RWx)) = 0 if βj and α are

Γ0-associated.

In particular, Also, let J ⊂ {1, 2, . . . , N} be the set of indices j such
that βj and α are Γ0-disjoint, then

ker(RWx) = Φ
(
⊕j∈J C0(S∗Ux)⊗ EndΓ0(β

kj
j )
)

and

πα(BΓ
M)/πα(ψ−1(M ;E)Γ) ' Φ

(
⊕j /∈J C0(S∗Ux)⊗ EndΓ0(β

kj
j )
)
.

Proof. The proof is essentially a consequence of Proposition 2.4 by
including Ux as a parameter, using also Lemma 3.8. To see how this
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is done, we will use the notation of that lemma, in particular, Wx '
Γ×Γ0 Ux ' (Γ/Γ0)×Ux and E ' Γ×Γ0 (Ux× β). We identify Wx with
Γ×Γx Ux, i.e. we work with Wx = Γ×Γx Ux.

Let πα the fundamental morphism of restriction to the α-isotypical
component, see Equations (1) and (11). Recall that Bx := ψ0(Ux;E).
Since Γx acts trivially on Ux, Remark 3.11 yields the Γ-equivariant
isomorphisms

(33) IndΓ
Γ0

(Bx) ' ψ0(Ux)⊗ IndΓ
Γ0

(End(β)) ⊂ BWx ,

where the last inclusion is modulo the trivial identification given by
P ⊗ f(s)(γ, x) = P (f(γ)s(γ))(x), P ∈ ψ0(Ux), f ∈ IndΓ

Γ0
(End(β)) and

s ∈ Cc(Wx,End(E)). Combining further Remark 3.11 with Remark
3.7, we further obtain the isomorphism

ψ−1(Wx;E) ' ψ−1(Ux)⊗ End(IndΓ
Γ0

(β)) .

Lemma 3.8 and the exactness of the functor V → V Γ give πα(BΓ
Wx

) =

πα◦Φ(BΓx
x )+πα(ψ−1(Wx)

Γ). Hence we obtain πα(BΓ
Wx

)/πα(ψ−1(Wx)
Γ) =

πα ◦ Φ(BΓx
x )/πα ◦ Φ(BΓx

x ) ∩ πα(ψ−1(Wx)
Γ).

Let A and J be the image and, respectively, the kernel of πα :
IndΓ

Γ0
(End(β))Γ → End(pα IndΓ

Γ0
(β)), which have been identified in

Proposition 2.4 in terms of the set J . Recall next from Equation (23)
that L2(Wx;E) = L2(Ux)⊗IndΓ

Γ0
(β), again Γ-equivariantly. Each time,

the action is on the second component, since Γ0 = Γx acts trivially on
ψ0(Ux). The action of IndΓ

Γ0
(Bx) ⊂ BWx on L2(Wx;E) = L2(Ux) ⊗

IndΓ
Γ0

(β) is compatible with the tensor product decomposition of Equa-

tion (33), in the sense that ψ0(Ux) acts on L2(Ux) and IndΓ
Γ0

(End(β))

acts on IndΓ
Γ0

(β). Also, IndΓ
Γ0

(Bx)
Γ ' ψ0(Ux) ⊗ IndΓ

Γ0
(End(β))Γ, (we

use this isomorphism to identify them). We obtain that

(34) πα ◦ Φ(BΓx
x ) = πα(IndΓ

Γ0
(Bx)

Γ) = ψ0(Ux)⊗ A .

On the other hand, Corollary 2.9 then gives that πα(ψ−1(Wx; End(E))Γ)
is the algebra of Γ-invariant compact operators acting on the space
pα(L2(Wx,End(E))). Therefore, ψ−1(Ux)⊗A ⊂ πα(ψ−1(Wx; End(E))Γ),

since ψ−1(Ux)⊗A consists of compact, Γ-invariant operators acting on
pα(L2(Wx, E)). Consequently,

(35) ψ−1(Ux)⊗ A ⊂ πα(IndΓ
Γ0

(Bx)
Γ) ∩ πα(ψ−1(Wx)

Γ)

⊂ ψ0(Ux)⊗ A ∩ K(pαL
2(Wx;E))Γ ⊂ ψ−1(Ux)⊗ A ,

and hence we have equalities everywhere.
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Recall from Corollary 3.10 that AΓ
Wx
' AΓx

x . We obtain that the map

(36) RWx : AΓ
Wx
' BΓ

Wx
/ψ−1(Wx;E)Γ → πα(BΓ

Wx
)/πα(ψ−1(Wx;E)Γ)

becomes, up to the canonical isomorphisms above, the map

AΓx
x ' C0(S∗Ux)⊗ EndΓ0(β) → πα(BΓ

Wx
)/πα(ψ−1(Wx)

Γ)

= πα ◦ Φ(BΓx
x )/πα ◦ Φ(BΓx

x ) ∩ πα(ψ−1(Wx)
Γ)

' ψ0(Ux)⊗ A/ψ−1(Ux)⊗ A ' C0(S∗Ux)⊗ A ,

(37)

with all maps being surjective and preserving the tensor product de-
compositions. This identifies the kernel of RWx with C0(S∗Ux)⊗ J and
the image of RWx with C0(S∗Ux)⊗A. The rest of the statement follows
from the identification of J and A in Proposition 2.4. �

Proposition 3.12 above and its proof give the following corollary.

Corollary 3.13. We use the notation of Proposition 3.12 and we
identify Prim(End(β)) with {1, 2, . . . , N} as in Remark 2.5. Then the
homeomorphism Prim(AΓ

Wx
) ' S∗Ux × {1, 2, . . . , N} maps the set Ξ ∩

Prim(AΓ
Wx

) to S∗Ux×J . In particular, the restriction Ξ∩Prim(AΓ
Wx

)→
S∗Ux of the central character is a covering as well.

Proof. Using the notations of the proof of Proposition 3.12, we have
that ker(RWx) has primitive ideal spectrum S∗Ux ×Prim(J). We have
Ξ ∩ Prim(AΓ

Wx
) = S∗Ux × Prim(A). �

The same methods yield the following result.

Corollary 3.14. Let M0 := M(Γ0), the principal orbit bundle. The
central character map Prim(AΓ

M0
) → S∗M0/Γ defined by the inclusion

C0(S∗M0/Γ) ⊂ Z(AΓ
M0

) is a covering with typical fiber Prim(End(Ex)
Γ0)

such that Ξ ∩ Prim(AΓ
M0

)→ S∗M0/Γ is a subcovering, see (27) for the
definition of Ξ. In particular, Ξ ∩ Prim(AΓ

M0
) is open and closed in

Prim(AΓ
M0

).

Proof. The first statement is true locally, by Corollary 3.10, and hence

it is true globally. Indeed, let x ∈ M0, let ξ ∈ S∗xM0, and let ρ ∈ Γ̂x
that appears in Ex (so (ξ, ρ) ∈ ΩM). We let Wx ⊂ M0 ⊂ M be the
typical tube with minimal isotropy Γx = Γ0, as before. Let Zx :=
C0(S∗Wx)

Γ ⊂ ZM = C(S∗M)Γ. Then Prim(ZxA
Γ
M) is an open neigh-

borhood in Prim(AΓ
M0

) of the primitive ideal ker(πξ,ρ), see Proposition
3.1 for notation and details. We have that ZxA

Γ
M = AΓ

Wx
and hence,

on Prim(ZxA
Γ
M), the central character is a covering, by Corollary 3.10.

Similarly, its restriction to Ξ∩Prim(ZxA
Γ
M) is a covering by Corollary

3.13. �
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Putting Corollary 3.14 and Proposition 3.12 together we obtain the
following results.

Corollary 3.15. Let M0 be the principal orbit type of M . The ideal
ker(RM0) = AΓ

M0
∩ ker(RM) is defined by the closed subset Ξ0 :=

Ξ∩Prim(AΓ
M0

) of Prim(AΓ
M0

) consisting of the sheets of Prim(AΓ
M0

)→
S∗M0/Γ that correspond to the simple factors End(Exρ)

Γ0 of End(Ex)
Γ0

with ρ and α Γ0-associated.

If Γ is abelian, then ρ and α are characters and saying that they
are Γ0-associated means, simply, that their restrictions to Γ0 coincide:
ρ|Γ0 = αΓ0 . This is consistent with the definition given in [5].

3.5. The non-principal orbit case. As in the rest of the paper, we
assume M to be connected. We will show in Theorem 3.17 that Ξ is the
closure of Ξ0 in Prim(AΓ

M). To that end, we first construct a suitable
basis of neighborhoods of Prim(AΓ

M) using Lemma 3.2.

Remark 3.16. Let Γ(ξ, ρ) ∈ Prim(AΓ
M), where we have used the de-

scription of Prim(AΓ
M) provided in Proposition 3.1 as orbits of pairs

ξ ∈ S∗M and suitable ρ ∈ Γ̂ξ. We construct a basis of neighborhoods
(Vξ,ρ,n)n∈N of Γ(ξ, ρ) in Prim(AΓ

M) as follows. Let ξ ∈ S∗xM (that is,
ξ sits above x ∈ M) and we use the notation Ux and Wx of Equation
(21), as always.

First, by choosing a different point ξ in its orbit, if necessary, we
may assume that Γ0 ⊂ Γξ. Now let (On)n∈N be a family of Γξ-invariant
neighborhoods of ξ in S∗Ux such that:

• for all n and γ ∈ Γ \ Γξ, we have γOn ∩ On = ∅,
• On+1 ⊂ On and

⋂
n∈NOn = {ξ}.

For any n ∈ N, we choose a function ϕn ∈ Cc(On)Γξ such that ϕn ≡ 1
on On+1. Let pρ ∈ End(Ex)

Γξ be the projection onto Exρ. We can
assume the bundle E to be trivial on Ux and, using that, we first extend
pρ constantly on On and then as an element qn ∈ Cc(S∗Ux; End(Ex))

Γx

defined as

qn :=

{
ΦΓξ,Γx(ϕnpρ) on ΓxOn
0 on S∗Ux \ ΓxOn,

with ΦΓξ,Γx the Frobenius isomorphism of Equation (14). Let us set

q̃n := ΦΓx,Γ(qn) ∈ AΓ
M , where ΦΓx,Γ is the Frobenius isomorphism of

Equation (14). Finally, we associate to q̃n the open set

Vξ,ρ,n := {J ∈ Prim(AΓ
M) | q̃n /∈ J}.
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Recall from 3.2 that Vξ,ρ,n is an open subset of Prim(AΓ
M). Moreover, it

follows from our definition that Vξ,ρ,n+1 ⊂ Vξ,ρ,n and that
⋂
n∈N Vξ,ρ,n =

{Γ(ξ, ρ)}.

Recall that we are assuming that M is connected.

Theorem 3.17. The closed set Ξ ⊂ Prim(AΓ
M) defined by the ideal

ker(RM): that is, Ξ := Prim(AΓ
M) r Prim(ker(RM)), is the closure in

Prim(AΓ
M) of the set Ξ0 := Ξ ∩ Prim(AΓ

M0
), where M0 is the principal

orbit bundle of M .

Proof. We have that Ξ0 ⊂ Ξ since Ξ0 ⊂ Ξ and the latter is a closed set.
Conversely, let P ∈ Prim(AΓ

M) \ Ξ0. We will show that P /∈ Ξ. Let P
correspond to (ξ, ρ) ∈ ΩM , as in Proposition 3.1. We may assume that
Γ0 ⊂ Γξ. Let x be projection of ξ onto M . Since the problem is local,
we may also assume that Ux ⊂ TxM , that M = Wx := Γ ×Γx Ux, and
that E := Γ×Γx (Ux × β) for some Γx-module β.

Using the notations of Remark 3.16, there exists n > 0 such that
Vξ,ρ,n ∩ Ξ0 = ∅. Let q̃n = ΦΓx,Γ(qn) be the symbol defined in Remark
3.16. The description of Ξ0 provided in Corollary 3.15, the definition of
Vξ,ρ,n, and the definition of q̃n imply that πζ,ρ′(q̃n) = 0 for any ζ ∈ S∗M0

and ρ′ ∈ Γ̂0 such that Γ(ζ, ρ′) ∈ Ξ0, that is, such that ρ′ and α are Γ0-
associated.

We next “quantize q̃n” in an appropriate way, that is, we construct

an operator Q̃n ∈ BΓ
Wx

with symbol q̃n and with other convenient prop-
erties as follows. First, let χ ∈ C∞c (Ux)

Γx be such that χϕn = ϕn, which
is possible since ϕn has compact support. Then let ψ ∈ C∞(T ∗xM)Γx

be such that ψ(0) = 0 if |η| < 1/2 and ψ(η) = 1 whenever |η| ≥ 1.
Recall that in this proof Ux ⊂ TxM is identified with its image in
M = Γ×Γx Ux through the exponential map. Let for any symbol a

Op(a)f(y) :=

∫
T ∗xM

∫
Ux

ei(y−z)·η a(y, z, η)f(z)dzdη.

We shall use this for a(y, z, η) := χ(y)ψ(η)q̃n

(
η
|η|

)
χ(z), then set

Q := Op(a) , that is

Qf(y) :=

∫
T ∗xM

∫
Ux

ei(y−z)·η χ(y)ψ(η)q̃n

(
η

|η|

)
χ(z)f(z)dzdη

to be the standard pseudodifferential operator on Ux, associated to

the symbol a(y, z, η) := χ(y)ψ(η)q̃n

(
η
|η|

)
χ(z). The operator Q is Γx-

invariant by construction. Using the Frobenius isomorphism of Equa-

tion (14), we extend Q to the operator Q̃n := Φ(Q), which acts on
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M = Wx = Γ ×Γx Ux (see also Equation (23) with regards to this

isomorphism). Then Q̃n ∈ Ψ0(M ;E)Γ, that is, it is Γ-invariant, by

construction, and has principal symbol σ0(Q̃n) = q̃n.
Now let x0 ∈ M0 ∩ Ux, where, we recall, M0 := M(Γ0) denotes the

principal orbit bundle. We have

L2(Wx0 ;E) = IndΓ
Γ0

(
L2(Ux0 ; β)

)
= L2

(
Ux0 ; IndΓ

Γ0
(β)
)
,

where β = Ex0 = Ex by the assumption that E := Γ×Γx (Ux × β).

Let βj ∈ Γ̂0 be the isomorphism classes of the Γξ-submodules of β and
kj ≥ 0 is the dimension of the corresponding βj-isotypical component

in β, so that β ' ⊕Nj=1β
kj
j , as Γ0-modules, as before. Thus

L2(Wx0 ;E) '
N⊕
j=1

L2(Ux0 ; IndΓ
Γ0

(β
kj
j )) .

Recall that the α-isotypical component of IndΓ
Γ0

(β
kj
j ) is given by α⊗

HomΓ(α, IndΓ
Γ0

(β
kj
j )), which is non-zero if, and only if, α and βj are

Γ0-associated, by the Frobenius isomorphism. Hence, passing to the
α-isotypical components, we have

L2(Wx0 ;E)α := pαL
2(Wx0 ;E) =

⊕
j∈Jc

L2(Ux0 ; IndΓ
Γ0

(β
kj
j ))α ,

where J ⊂ {1, . . . , N} is the set of indices such that βj ∈ Γ̂0 and α are

Γ0-disjoint; J c is its complement (i.e. βj ∈ Γ̂0 and α are Γ0-associated).

Let pJ ∈ End(β)Γ0 be the projector onto
⊕

j∈Jc β
kj
j . Recall that

πζ,βj(q̃n) = 0 for any (ζ, βj) ∈ S∗M0 × Γ̂0 with j /∈ J . Therefore
q̃n(ζ)pJ = 0, for all ζ ∈ S∗M0. Since S∗M0 is dense in S∗M , this
implies that q̃npJ = 0. Thus

Q̃npJ = Op(χψq̃nχ)pJ = Op(χψq̃nχpJ) = 0 .

Hence for any f ∈ L2(Wx0 ;E)α, we have that Q̃nf = 0. This is true for

any x0 ∈M0, so we conclude that Q̃n is zero on L2(M0;E)α. Since M0

has measure zero complement in M , we have L2(M0;E)α = L2(M ;E)α;

therefore πα(Q̃) = 0. This implies that RM(q̃) = 0, while πξ,ρ(q̃) = 1.
Thus Γ(ξ, ρ) /∈ Ξ, which concludes the proof. �

Our question now is to decide whether some given Γ(ξ, ρ) is in Ξ or
not. Recall that ρ and α are said to be Γ0-associated if HomΓ0(ρ, α) 6=
0. The set Xα

M,Γ was defined in the introduction as the set of pairs

(ξ, ρ) ∈ T ∗M \ {0} × Γ̂ξ for which there is an element g ∈ Γ such that
g · ρ and α are Γ0-associated.
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Proposition 3.18. We use the notation in the last two paragraphs.
We have Γ(ξ, ρ) ∈ Ξ if, and only if, there is a g ∈ Γ such that g · ρ and
α are Γ0-associated. In other words, we have that Ξ ' Xα

M,Γ/Γ.

Proof. Let Γ(ξ, ρ) ∈ Prim(AΓ
M), with x ∈ M the base point of ξ. We

can assume (by choosing a different element in the orbit if needed) that
Γ0 ⊂ Γξ. Let q̃n ∈ AΓ

M be the element defined in Remark 3.16 and Vξ,ρ,n
the corresponding neighbourhood of Γ(ξ, ρ) in Prim(AΓ

M).
There is a Γx-equivariant isomorphism E|Ux ' Ux×β, where β = Ex

is a Γx-module. Since Γ0 ⊂ Γx, we may decompose β into Γ0-isotypical

components, i.e. β =
⊕N

j=1 β
kj
j , with the usual notation. If η ∈ On,

then πη,βj(q̃n) = ϕn(η)πβj(pρ). Therefore, for any η ∈ S∗M , we have

πη,βj(q̃n) = 0⇔ HomΓ0(βj, ρ) = 0 or q̃n(η) = 0.

This implies that

Vξ,ρ,n ∩ Ξ0 = {Γ(η, β) ∈ Ξ0 | q̃n(η) 6= 0 and HomΓ0(β, ρ) 6= 0}
It follows from the determination of Ξ0 in Corollary 3.15 that Vξ,ρ,n ∩
Ξ0 6= ∅ if, and only if, we have HomΓ0(ρ, α) 6= 0. Now Ξ = Ξ0 by
Theorem 3.17. Since the open sets (Vξ,ρ,n)n∈N form a basis of neighbor-
hoods of Γ(ξ, ρ), we conclude that Γ(ξ, ρ) ∈ Ξ if, and only if, we have
HomΓ0(ρ, α) 6= 0. �

We obtain the following corollary.

Corollary 3.19. Let us assume that Γ acts freely on a dense open
subset of M . Then Ξ = Prim(AΓ

M).

Proof. The assumption on the action implies that Γ0 = {1}. If ξ ∈
T ∗M \ {0} and ρ ∈ Γ̂ξ, then ρ and α are always {1}-associated. The
Corollary then follows from Proposition 3.18. �

4. Applications and extensions

We now prove the main result of the paper on the characterization
of Fredholm operators and discuss some extensions of our results.

4.1. Fredholm conditions. We now turn to the proof of our main
result. We assume that M is a compact smooth manifold. We have
the following Γ–equivariant version of Atkinson’s theorem.

Proposition 4.1. Let V be a unitary Γ–module and P ∈ L(V )Γ be
a Γ–equivariant bounded operator on V . We have that P is Fredholm
if, and only if, it is invertible modulo K(V )Γ, in which case, we can
choose the parametrix (i.e. the inverse modulo the compacts) to also be
Γ-invariant.
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Proof. See for example [5, Proposition 5.1]. �

Corollary 4.2. Let P ∈ ψ0(M ;E)Γ and α ∈ Γ̂. We have that πα(P )
is Fredholm on L2(M ;E)α if, and only if, πα(P ) is invertible modulo

πα(K(L2(M ;E))Γ) in πα(ψ0(M ;E)Γ).

We are now in a position to prove the main result of this paper,
Theorem 1.2.

Proof ot Theorem 1.2. As in [5, Section 2.6], we may assume that P ∈
ψ0(M ;E)Γ. Corollary 4.2 then states that πα(P ) is Fredholm if, and
only if, the image of its symbol σ(P ) is invertible in the quotient algebra

RM(AΓ
M) = πα(ψ0(M ;E)Γ)/πα(K(L2(M ;E))Γ).

The isomorphism Prim(AΓ
M) ' ΩM/Γ of Proposition 3.1 and Propo-

sition 3.18 identify the primitive ideal spectrum Ξ of RM(AΓ
M) with

the set Xα
M,Γ/Γ. Therefore RM(σ(P )) is invertible if, and only if, the

endomorphism πξ,ρ(σ(P )) is invertible for all (ξ, ρ) ∈ Xα
M,Γ, i.e. if, and

only if, P is α-elliptic. �

4.2. The abelian case [5]. Many statements and definitions become
easier in the case of abelian groups. This is true in particular for the
notion of Γ0-associated representations using the following observation.

If Γi, i = 1, 2, are both abelian, then the irreducible representations
αi are characters, that is, morphisms αi : Γi → C∗, and we have that
they are H-associated for some subgroup H if, and only if, α1|H = α2|H .

Let α be an irreducible representation of Γ. When Γ is abelian, the
conjugacy class of isotropy subgroups corresponding to the principal
orbit type of the action has only one element, namely Γ0. In that case,
the set Xα

M,Γ defined in Equation (7) of the introduction has the simpler
expression:

Xα
M,Γ = {(ξ, α|Γ0) | ξ ∈ T ∗M \ {0}}.

As a consequence, it is easier to check the α-ellipticity for an operator
P in the abelian case. Let E,F be Γ-equivariant vector bundles over
M and set α0 := α|Γ0 . Recall that, for any x ∈ M , we denote by Exα0

the α0-isotypical component of Ex, seen as a Γ0-representation. We
then recover the main result of [5]. Indeed, Theorem 1.2 can then be
stated as follows:

Theorem 4.3. [5, Theorem 1.2] Let Γ be a finite, abelian group acting
on a smooth, compact manifold M and let P ∈ ψm(M ;E,F )Γ. Then,
for any s ∈ R, the following are equivalent:

(1) the operator πα(P ) : Hs(M ;E)α → Hs−m(M ;F )α is Fredholm,
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(2) for all (x, ξ) ∈ T ∗M \ {0}, the restriction of σ(P )(x, ξ) defines
an isomorphism

πα0(σ(P )(x, ξ)) : Exα0 → Fxα0 .

4.3. Particular cases. In this section, Γ denote a finite group and 1̂
denotes the trivial representation. We denote again by M a Γ-manifold.

4.3.1. Scalar operators. Our main theorem becomes quite explicit when
we are dealing with scalar operators, i.e. when the vector bundles Ei =
M × C, where C denotes the trivial representation of Γ.

Proposition 4.4. Let P : Hs(M)→ Hs−m(M) be a Γ-invariant pseu-

dodifferential operator. Let α ∈ Γ̂. Then P is α-elliptic if and only if
σ(P )(ξ) is invertible for all ξ ∈ T ∗M \{0} such that α is Γ0-associated
to 1̂Γξ .

Proof. Let (ξ, ρ) ∈ Xα
M,Γ. If ρ 6= 1̂Γξ then Cρ = 0 and then πρ(σ(P )(ξ)) :

0→ 0 is invertible. Now if ρ = 1̂Γξ then (ξ, ρ) ∈ Xα
M,Γ if and only if α

is Γ0-associated to 1̂Γξ . �

4.3.2. Trivial action. Assume that M is connected and Γ acts trivially
on M . Our assumption implies that Γ0 = Γξ = Γ, for all ξ ∈ T ∗M \{0}.
It follows that ρ ∈ Γ̂ξ is Γ0-associated to α ∈ Γ̂ if and only if α = ρ.

Let E →M be a Γ-equivariant vector bundle. For any x ∈M , recall
that we denote Exα the α-isotypical component of Ex. Assuming M
to be connected, we have that Eα =

⋃
x∈M Exα form a Γ-equivariant

sub-vector bundle of E.

Proposition 4.5. Assume that Γ acts trivially on M and let α ∈
Γ̂. Let E,F be two Γ-equivariant vector bundles over M and let P ∈
ψm(M ;E,F )Γ. Then for any s ∈ R, the following are equivalent

(1) πα(P ) : Hs(M ;Eα)→ Hs−m(M ;Fα) is Fredholm,
(2) for all (x, ξ) ∈ T ∗M \ {0}, the morphism

πα(σ(P )(x, ξ)) : Exα → Fxα

is invertible,
(3) for all (x, ξ) ∈ T ∗M \ {0}, the morphism

σm(P )⊗ idα∗(x, ξ) : HomΓ(α,Ex)→ HomΓ(α, Fx)

is invertible.

Note that we recover the usual Fredholmness result for the elliptic
operator pFαPpEα ∈ ψm(M ;Eα, Fα).
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Proof. The equivalence between (1) and (2) is a direct consequence of
Theorem 1.2.

Let us check the equivalence of (1) and (3). First note that

(Hs(M,E)⊗ α)Γ = Hs(M, (E ⊗ α)Γ),

since the action of Γ on M is trivial. The operator πα(P ) is Fred-
holm if, and only if, the following pseudodifferential operator Pα :
Hs(M,Hom(α,E)Γ)→ Hs−m(M,Hom(α, F )Γ) defined for any v∗ ∈ α∗
and s ∈ C∞(M,E) by Pα(v∗s) = v∗Ps is Fredholm. Furthermore, the
operator Pα is Fredholm if, and only if, it is elliptic, that is if, and only
if, σm(P ) ⊗ idα∗(x, ξ) : HomΓ(α,Ex) → HomΓ(α, Fx) is invertible for
any (x, ξ) ∈ T ∗M \{0}. Note that the invertibility of σm(P )⊗idα∗(x, ξ)
is equivalent to the invertibility of πα(σm(P )(x, ξ)) by definition, so this
is consistent with (2). �

4.3.3. Free action on a dense subset. As in the previous sections, the
group Γ is finite and acts continuously on the manifold M . We consider
vector bundles E,F →M .

Proposition 4.6. Assume that Γ acts freely on a dense subset in M ,

and let P ∈ ψm(M ;E,F )Γ. For any α ∈ Γ̂, we have that P is α-elliptic
if, and only if, P is elliptic.

Proof. It follows from Corollary 3.19 that Xα
M,Γ = XM,Γ. Thus the

operator Pα is α-elliptic if, and only if, the sum
⊕

ρ∈Γ̂ξ
πρ(σm(P )(ξ)) =

σm(P )(ξ) is invertible for all ξ ∈ T ∗M \ {0}, i.e. if, and only if, P is
elliptic. �

4.4. Simonenko’s localization principle. In this section we give
a characterization using Simonenko’s principle [43] for πα(P ) to be
Fredholm. We start with two preliminary lemmas that we use to obtain
a proof of Simonenko’s principle in the classical case and in our case.

We assume as before that M is a compact smooth manifold endowed
with an action of a compact group Γ.

4.4.1. Simonenko’s general principle. Let A be a unital C∗-algebra and
Z = C(ΩZ) unital sub-C∗-algebra in A, i.e. 1Z = 1A. An element a ∈ A
is said to have the strong Simonenko local type property with respect
to Z if, for every φ, ψ ∈ Z with compact disjoint supports, φaψ = 0.

Lemma 4.7. The set B ⊂ A of elements a satisfying the strong Simo-
nenko local property is the set of elements of A commuting with Z.

Proof. We are going to show that the set of elements a ∈ A with the
strong Simonenko local type property is a C∗-algebra B containing Z
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and that every irreducible representation of B restricts to a scalar on
Z, and hence that Z commutes with B.

Let us show that B is a sub-C∗-algebra of A. Note that B is not
empty since Z ⊂ B. To show that B is a sub-C∗-algebra, the only fact
that is not trivial is that ab ∈ B, for all a, b ∈ B. Let φ and ψ ∈ Z
with disjoint compact supports and let θ be a function equal to 1 on
supp(ψ) and 0 on supp(φ) using Urysohn lemma. Then we have

(38) φabψ = φa(θ + 1− θ)bψ = φaθbψ + φa(1− θ)bψ = 0,

since φaθ = 0 and (1− θ)bψ = 0.
Let π : B → L(H) be an irreducible representation of B. First,

let us show that for any φ, ψ ∈ Z with disjoint support, we either
have π(φ) = 0 or π(ψ) = 0. Indeed we have π(φ)π(a)π(ψ) = 0 since
φaψ = 0, for any a ∈ B. Assume that π(ψ) 6= 0 then there is η ∈ H
such that π(ψ)η 6= 0. Now, π is irreducible so we get that the set
{π(a)π(ψ)η, a ∈ B} is dense in H. Thus π(φ) = 0 on a dense subspace
of H and so on H.

Assume now that π(Z) 6= C1H . Then there exist two distinct charac-
ters χ0, χ1 ∈ Sp(π(Z)). Denote by hπ : Sp(π(Z))→ Sp(Z) the injective
map adjoint to π, and choose φ, ψ ∈ C(Sp(Z)) with disjoint supports
such that φ(hπ(χ0)) = 1 and ψ(hπ(χ1)) = 1. Then π(φ)(χ0) = 1
and π(ψ)(χ1) = 1, which contradicts the fact that either π(φ) = 0 or
π(ψ) = 0.

�

Lemma 4.8. Let A be a unital C∗-algebra and Z = C(ΩZ) be a unital
sub-C∗-algebra as before. Then for every primitive ideal J ⊂ A, there
exists ω ∈ ΩZ such that ωA ⊂ J .

Recall that a family (ϕi)i∈I of morphisms of a C∗-algebra A is said
to be exhaustive if any primitive ideal contains kerϕi, for some i ∈ I
[38]. Then Lemma 4.8 can also be formulated by saying that the family
of morphisms χω : A→ A/ωA, for ω ∈ ΩZ , is exhaustive for A.

Proof. Let J = kerπ ⊂ A be a primitive ideal. Since A is a sub-algebra
commuting with Z we get that π(Z) ⊂ π(A)′ so Schur’s Lemma implies
that π(Z) ⊂ Cid. We deduce that π|Z is irreducible, and π|Z 6= 0 since
1Z = 1A. It follows that ker(π|Z)A ⊂ J . �

Definition 4.9. Denote by H = L2(M). An operator P ∈ L(H) is
said to be locally invertible at x ∈ M if there are a neighbourhood Vx
of x and operators Qx

1 and Qx
2 ∈ L(H) such that

(39) Qx
1Pφ = φ and φPQx

2 = φ, for any φ ∈ Cc(Vx).
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The operator P is said to be locally invertible if it is locally invertible
at any x ∈M .

Let ΨM ⊂ L(H) be the C∗-algebra of all P ∈ L(H) such that φPψ ∈
K(H), for all φ, ψ ∈ C(M) with disjoint support. We denote by BM the
image of ΨM in the Calkin algebra Q(H) := L(H)/K(H). We know by
Lemma 4.7 that

BM = {P ∈ Q(H) | φP = Pφ for all φ ∈ C(M)}.

Proposition 4.10 (Simonenko’s principle). If P ∈ ΨM , then P is
locally invertible if, and only if, it is Fredholm.

Proposition 4.10 is a particular case of the equivariant version that
we prove in Proposition 4.11; we thus refer to Proposition 4.11 for the
proof.

4.4.2. Application. We have always said that Γ is finite, so let us denote
now the group by G and assume that G is compact. Let us return to
the Fredholm condition for πα(P ). Denote by H := L2(M,E) and by

Hα the α-isotypical component associated to α ∈ Ĝ.
We say that P ∈ L(H) is locally α-invertible at x ∈M if there are a

G-invariant neighbourhood Vx of Γx and operators Qx
1 and Qx

2 ∈ L(Hα)
such that

Qx
1πα(P )φ = φ and φπα(P )Qx

2 = φ,

for any φ ∈ C(M)G supported in Vx.
We denote by ΨG

M the G-invariant elements in the C∗-algebra ΨM ,
which was defined in the previous subsection.

Proposition 4.11 (Simonenko’s equivariant principle). Let P ∈ ΨG
M .

Then P is locally α-invertible if and only if πα(P ) is Fredholm.

Proof. Let BαM be the image of ΨG
M in the Calkin algebra Q(Hα). We

know from Lemma 4.7 that

BαM = {P ∈ Q(Hα) | φP = Pφ, ∀φ ∈ C(M)G}.
Assume that P is locally α-invertible, i.e. ∀x ∈ M , there are a

neighborhood Vx of Gx and operators Qx
1 , Q

x
2 ∈ L(Hα) such that

Qx
1πα(P )φ = φ and φπα(P )Qx

2 = φ, for any φ ∈ C(M)G supported
in Vx. Denote by χx : BαG → BαG/GxBαG. We use the same notation for
πα(P ) and its projection in Q(Hα). We have that

χx(Q
x
1πα(P )φ) = χx(Q

x
1)χx(πα(P ))χx(φ) = χx(φ).

Since χx(φ) = 1, we get:

χx(Q
x
1)χx(πα(P )) = 1.
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And similarly,

χx(πα(P ))χx(Q
x
2) = 1.

Then by Lemma 4.8, we obtain that πα(P ) is invertible in BαM and so
it is Fredholm.

Now assume that πα(P ) is Fredholm and let Q be an inverse modulo
K(Hα) for πα(P ), i.e. πα(P )Q = id + K and Qπα(P ) = id + K ′,
with K,K ′ ∈ K(Hα). Using Proposition 4.1 and Lemma 2.9, we can
assume that K = πα(k) and K ′ = πα(k′) ∈ K(Hα) = πα(K(H)G). Let
χ ∈ C(M)G be equal to 1 on a G-invariant neighbourhood Vx of Gx
and let φ ∈ C(M)G be supported in Vx then

φχπα(P )Qχ = φχ2 + φχKχ and χπα(P )Qχφ = χ2φ+ χK ′χφ.

Since φ is supported in Vx, we have φχ = φ and so

φπα(P )Qχ = φ(1 + χKχ) and πα(P )Qχφ = (1 + χK ′χ)φ.

Choosing Vx small enough, we may assume that ‖χKχ‖ < 1 and
‖χK ′χ‖ < 1. It follows that (1 + χKχ) and (1 + χK ′χ) are invertible
and this implies

φπα(P )
(
Qχ(1 + χKχ)−1

)
= φ and

(
(1 + χK ′χ)−1χQ

)
πα(P )φ = φ,

i.e. P is locally α-invertible. �

We now recall the definition of G-transversally elliptic operator, see
[2]. Assume that M is a compact smooth manifold and that G is a
compact Lie group acting on M . Denote by g the Lie algebra of G.
Recall that any X ∈ g defines as usual the vector field X∗M given by
X∗M(m) = d

dt |t=0
etX ·m. Denote by π : T ∗M → M the projection and

let us introduce accordingly with [2] the G-transversal space

T ∗GM := {α ∈ T ∗M | α(X∗M(π(α))) = 0,∀X ∈ g}.

A G-invariant classical pseudodifferential operator P of order m is said
G-transversally elliptic if its principal symbol is invertible on T ∗GM\{0}.

Corollary 4.12. Assume that M is compact, G is a compact Lie group
and let P ∈ ψ0(M ;E)G be a G-transversally elliptic operator. Then P

is locally α-invertible for any α ∈ Ĝ.

Corollary 4.13. Assume that M is compact and Γ is finite. Let P ∈
ψ(M ;E,F )Γ and α ∈ Γ̂. Then the following are equivalent:

(1) P : Hs(M ;E)α → Hs−m(M ;F )α is Fredholm for any s ∈ R,
(2) P is α-elliptic,
(3) P is locally α-invertible.
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Université Lorraine, 57000 Metz, France

E-mail address: remi.come@univ-lorraine.fr
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